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Many of the statistical properties of both the velocity and the vorticity fields of a 
nominally zero-pressure-gradient turbulent boundary layer at  R, = 27 650 (R, = 
2685) have been simultaneously measured. The measurements were made with a 
small nine-sensor hot-wire probe which can resolve the turbulence to within about six 
Kolmogorov microscales just above the sublayer. The statistical properties of the 
velocity vector field compare very well with other laboratory measurements and with 
direct numerical simulations when Reynolds-number dependence is taken into 
account. The statistical properties of the vorticity field are also in generally good 
agreement with the few other measurements and with the direct numerical 
simulations available for comparison. Near the wall, r.m.s. measurements show that 
the fluctuating spanwise vorticity is the dominant component, but in the outer part 
of the boundary layer all the component r.m.s. values are nearly equal. R.m.s. 
measurements of the nine individual velocity gradients show that the gradients 
normal to the wall of all three velocity components are the largest, with peaks 
occurring near the wall as expected. Gradients in the streamwise direction are 
everywhere small. One-dimensional spectra of the vorticity components show the 
expected shift of the maximum energy to higher wavenumbers compared to spectra 
of the velocity components at the same location in the flow. The budget of the 
transport equation for total enstrophy indicates that the viscous dissipation rate is 
primarily balanced by the viscous diffusion rate in the buffer layer and by the 
rotation and stretching rate in the logarithmic layer. 

1. Introduction 
In Part 1 of this paper (VukoslavEevid, Wallace & B a h t  1991), a miniature probe 

with nine hot-wire sensors was described. It has been used to simultaneously measure 
the velocity and vorticity vectors in and above the buffer layer in a turbulent 
boundary layer with spatial resolution, at worst, of about six Kolmogorov 
microscales at a moderate Reynolds number. Such data have not been otherwise 
obtained experimentally to date. We briefly reviewed in Part 1 other hot-wire 
methods previously used to measure some vorticity components and referred to 
direct numerical computer simulations (DNS) which have been used to determine all 
three components of the velocity and vorticity vectors. Here in Part 2 we will present 

t On leave from the Veljko Vlahovid University, 81000 Titograd, Yugoslavia. 
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many of the statistical properties of the velocity and vorticity vector components 
measured simultaneously in a turbulent boundary layer at a Reynolds number of 
R, = 27650, where S is the boundary-layer thickness. These results will be compared 
to the few available laboratory measurements and to the DNS results mentioned 
above. The statistical properties of the velocity vector components will be presented 
primarily in order to demonstrate further the accuracy of the probe. It should be 
additionally stressed however, as described in VukoslavEevii. & Wallace (1981) and 
mentioned in Part 1 ,  that  our nine-sensor probe is the only hot-wire method which 
is able to account for and incorporate into its operation, to first order, the non- 
uniformity of the velocity field over the probe scnsing area. This is particularly 
important for instances when the probe encounters large local velocity gradients 
which cannot be accounted for by other hot-wire probes with fewer than nine sensors. 
Such occurrences are frequent in highly sheared turbulence such as the wall region 
of a turbulent boundary layer. These velocity statistics, with two exceptions only, 
will be compared to  results from methods which are also capable of measuring or 
simulating one or more of the vorticity components. For the turbulent boundary 
layer, the only other available hot-wire laboratory measurements which included a 
component of the vorticity vector are those of Klewicki (1989) at  the three Reynolds 
numbers R, = 10390, 29520, and 49885. The spanwise vorticity component in his 
investigation was measured with the probe designed by Foss (1981). In  the near-wall 
region, i.e. the viscous and buffer layers and the lower part of the logarithmic layer, 
channel flow measurements of the streamwise vorticity component made by 
Kastrinakis & Eckelmann (1983) are also available for comparison at R3 = 12600, 
where 9 is the channel half-width. The turbulent boundary layer has been 
numerically simulated by Spalart (1988) for the Reynolds numbers R, = 6890 and 
14500; the near-wall region can also be compared to the channel flow simulation of 
Kim, Moin & Moser (1987) at Ra = 3300. These simulations provide full field velocity 
and vorticity statistics for all components. In order to compare some of our velocity 
statistics with a higher-Reynolds-number boundary-layer experiment which has an 
established place in the literature, we also show the results of Klebanoff (1954) a t  
R, = 78000. A recent channel flow investigation by Wei & Willmarth (1989) over the 
Reynolds number range R@ = 2970-39 582 using a high-resolution laser-Doppler 
velocimeter has helped to clarify the dependence on Reynolds number of many of the 
streamwise and normal velocity component statistics. Because the effects of 
Reynolds number are separated fairly well from the effects of probe resolution for the 
velocity measurements in this study, these data will also be compared and discussed 
in order to demonstrate Reynolds-number dependence for all the comparison data 
sets. 

Table 1 lists the various investigations to which our measurements are compared, 
together with the velocity and vorticity components measured in each investigation, 
the spatial resolution of the method, and the Reynolds number of each investigation. 
The Kolmogorov lengthscale 7 for each of these investigations has been estimated 
based on our measurement of the dimensionless dissipation rate E+ = w/u,4 z -0.1 a t  
y+ = 15, which is found in figure 10. Here u, = (7,/p)i is the friction velocity, v is the 
kinematic viscosity, 7, is the wall stress and p is the fluid density. Our value of E+ for 
R, = 27650 is in quite good agreement with the simulation result of Mansour, Kim 
& Moin (1988). There is some evidence that E+ is dependent on the Reynolds number, 
but doubling the value of c+ to -0.2 only increases the ratio of A l / q  at y+ = 15 from 
2.2 to 2.6 for the Wei & Willmarth (1989) investigation for example, where A1 is the 
resolved length of the measurement. In table 2, the symbols used throughout the 
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Velocity and vorticity 
Type R, components measured 

Investigation flow Rid u v w w, wy  o, 

Present Boundary 27650 x x x . . . 

Balint et al. Boundary 21375 x x x . . . 

of or 

layer . . . x x x  

(1987) layer . . .  x x x  

Kastrinakis & 
Eckelmann 
(1983) 

Kim et al. 
(1987) 

Klebanoff 
(1965) 

Klewicki 
(1989) 

Spalart 
( 1988) 

Wei & 
Willmarth 
(1989) 

Channel 12 600 

Channel 3300 

Boundary 78000 

Boundary 29 520 

Boundary 14 500 

layer 

layer 

layer 

Channel 22 776 

Spatial resolution or grid size 

Ratio to 7 
(at y+ = 15) Viscous length 

Ax+ Ay+ Az+ Ax17 Ayf7 Azfy 
10.9 10.9 10.9 6.3 6.3 6.3 
10.9 10.9 10.9 6.3 6.3 6.3 
8.3 8.3 8.3 5.0 5.0 5.0 
8.3 8.3 8.3 5.0 5.0 5.0 

x x x . . . . 11.5 11.5 . 6.5 6.5 
. . . x . . . 11.5 11.5 . 6.5 6.5 

x x x . . . 12.0 0.05- 7.0 6.7 0.8 3.9 

. . . x x x 12.0 Same 7.0 6.7 0.8 3.9 
x x x . . . . 20.3 20.3 . 11.4 11.4 

4.4 

x x . . . . , 4.8 4.8 . 2.7 2.7 
. . . . .  x .  . 16.2 . . 9.1 
x x x . . . 20.0 0.24- 6.7 11.2 1.2 3.8 

. . . x x x 20.0 Same 6.7 11.2 1.2 3.8 
x x . . . . 3.9 3.9 3.9 2.2 2.2 2.2 

3.30 

TABLE 1.  Types of flow, Reynolds numbers and spatial resolution information of comparison 
data sets 

paper for these comparisons data, unless otherwise stated in the captions, are 
displayed. 

2. Experimental facility and instrumentation 
This investigation was carried out in a low-speed, open-return wind tunnel which 

was designed to create a thick turbulent boundary layer in order to obtain good 
probe spatial resolution for these vorticity measurements. The boundary layer 
developed on the lower wall of the tunnel over a 8 m fetch downstream of a 5 mm trip 
wire used to fix transition as verified by smoke streakline flow visualization. The 
speed range of the free-stream core of the tunnel can be varied over about 1-7 m/s 
with a free-stream turbulence level of about 0.5 YO a t  the lowest speeds. The spanwise 
variation of the mean velocity in the core is less than 1.5%. 

The nine hot-wire sensors of the vorticity probe were heated by constant- 
temperature anemometry circuits built by AA Lab Systems. The frequency response 
of the anemometer system for the flow speed studied was flat up to about 4000 Hz, 
which is much greater than the highest frequency at  which there is any significant 
energy in the flow a t  the Reynolds number studied here as determined from single- 
sensor probe spectra. The anemometer output voltages were amplified and digitized 
with a 12 bit Data Translation simultaneous sample and hold A/D converter 
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Measured property 

- a 0  aui au, au, 
Investigation Uc U,  0, U3 u v w uv UV- 8 w, wy w, - - - aY ax ay aZ 

- 

Present O A X Q O M  A 0  0 0 0 M  A 0 m A 
R, = 21650 
Balint et al. O O A  0 0  A 

(1981) 
R, = 21 315 

Kastrinakis & 
Eckelmann 
( 1983) 

Kim et al. 
(1987) 

Klebanoff 
(1954) 

Klewicki 
( 1989) 

Mansour et al. 
(1988) 

Spalart 
(1988) 

Wei & 
Willmarth 
(1989) 

1 =3300 R,  

.___._____ ~ ...................................................................................... R,=78000 

R,=29520 

R, = 3 300 . _ _ _  _-__ +. -. _ . --+. -. +. _. -. -. -. -. 

R, = 14500 

----- R+, = 22716 

Table 2. List of symbols 

operated by a DEC LSI 11/23 microprocessor. The data were sampled at the rate of 
1000 Hz, i.e. with a Nyquist frequency of 500 Hz, so that two consecutive sampling 
periods, when converted to  a streamwise length using Taylor's hypothesis, would be 
of about the same dimension as the 1.2 mm cross-stream dimension over which the 
cross-stream velocity gradients were determined by finite difference. At each location 
the data were continuously sampled for 180 s, which was found to be adequately long 
to obtain stationary higher-order statistics. The data were initially stored on a 
Winchester hard disk before being transferred to the disk of a Sun 3/260 
minicomputer for post-processing. 

3. Velocity component statistical properties 
3.1. Mean properties 

In  table 3 are listed several of the characteristics of the boundary layer investigated 
in this study as well as those for the earlier, somewhat lower Reynolds number 
preliminary study of Balint, Vukoslavaevid & Wallace (1987). Here U ,  is the free- 
stream velocity in the core of the tunnel, S is the boundary-layer thickness, 0 is the 
momentum thickness, S* is the displacement thickness, H = 6*/8 is the shape factor, 
and R, and R, are the Reynolds numbers based on S and 0 respectively. The friction 
velocity was determined by the Clauser method of choosing a value which causes the 
data in the logarithmic region to fit best, in a least-squares sense, the logarithmic law 
using the constants found by Coles (1962). 

In  the earlier investigation of Balint et al. (1987), a probe of the same design was 
used, but it was slightly larger, i.e. the vertical spacing between arrays 1 and 3 was 
1.5 mm and the horizontal spacing was 1.3 mm. It also had somewhat larger 



Velocity and vorticity vector jields of a boundary layer. Part 2 57 

urn s e s* 
U,W* (m) (4 (m) H R, R, 

Present 3.51 0.041 0.125 0.0121 0.0156 1.29 27650 2685 
Balint et al. (1987) 2.39 0.042 0.140 0.0136 0.0175 1.28 21375 2080 

TABLE 3. Boundary-layer characteristics 

common-prong resistances of about 0.14.13 SZ. Moreover, in the earlier experiment, 
there was a greater percentage of the data near the wall which did not converge to 
a solution than in the present experiment (9.8% at y+ = 14.1, 8.0% a t  y+ = 20.4, 
6.6 YO at y+ = 30.6 compared to the values for the present data given in Part 1) which 
undoubtedly accounts for some of the differences in the results. In fact the problems 
with the earlier experiment very near the wall motivated us to repeat the experiment 
with the improved probe for locations within the fully turbulent region (y/6 < 0.4). 
We increased the Reynolds number by a factor of almost 1.3 in order to have a higher 
signal-to-noise ratio for the vorticity measurements with about the same spatial 
resolution because the new probe size was a little smaller. 

Figure 1 shows the mean velocity variation of the boundary layer with the 
distance from the wall normalized with the friction velocity u, and the kinematic 
viscosity v. In figure l (a )  our present measurements determined a t  the geometric 
centre of the three arrays are shown. In figure 1 (b) ,  the values of the mean velocity 
measured a t  each of the three individual arrays of the nine-sensor probe in the 
present investigation are also shown. The values measured a t  the centre of the probe 
and at each array separately show the expected logarithmic form given by Coles 
(1962) : 

U' = 2.44 In y+ + 5.0. ( 1 )  
The buffer-layer data also agree very well with an empirical fit given by Spalding 
(1961) except a t  one location. The mean velocity values measured by all three arrays 
and at the probe centroid are low when the probe was centred at y+ = 18. These low 
mean values can be accounted for by a possible vertical positioning error of about 
0.1 mm at  this location which corresponds to about one viscous length. 

3.2. Moments of velocity Jluctuation components 
In  figure 2 (a-c), the r.m.s. values of the three fluctuating velocity components at the 
centre of the probe, normalized with the outer variables u, and 6 are compared to the 
higher-Reynolds-number boundary-layer measurements of Klebanoff ( 1954) and to 
the boundary-layer simulation of Spalart (1988), as well as to our earlier values. For 
y / S  2 0.05 all four sets of data agree very well. Near the wall Klebanoffs (1954) 
measurements show larger values for all fhree components with this scaling. 

The same data, normalized with the wall variables v and u,, are plotted in figure 
3(a-c) against y+ for the buffer layer and the lower part of the logarithmic layer 
where they are compared to the results of several other boundary layer and channel 
flow investigations. Our streamwise component measurements, seen in figure 3 (a), 
compare extremely well with those of Wei & Willmarth (1989) made a t  only a slightly 
lower Reynolds number. The range between their highest and lowest Reynolds 
numbers is shown hatched in order to demonstrate Reynolds-number dependence. 
The values of Kim et al. (1987) for the very low Reynolds number R% = 3300 reflect 
this Rcynolds-number dependence. Wei & Willmarth (1989) established that the wall 
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FIGURE 1 .  (a) Mean velocity a t  the geometric centre of the probe. ( b )  Mean velocity a t  each of 
the three arrays of the probe. Symbols given in table 2. 



Velocity and vorticity vector fields of a boundary layer. Par t  2 59 
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Y l d  

FIGURE 2. Measured r.m.s. fluctuating velocity components normalized with outer scaling u, 
and S and compared to other measured and simulated values. Symbols given in table 2. 

region above yi = 15 of bounded flows does not exhibit similarity with inner variable 
scaling a t  low Reynolds numbers. This dependence on Reynolds number, which was 
also pointed out by Purtell, Klebanoff & Buckley (1981) and seen by Spalart (1988) 
for all three r.m.9. velocity components, is also evident in the Kim et al. (1987) 
simulation of the normal fluctuation component shown in figure 3(b); it appears to 
be present for the spanwise component as well, as seen in figure 3 ( c ) .  The 
measurements of Kastrinakis & Eckelmann (1983) of the normal component do not 
follow the Reynolds-number trend near the wall. They needed to use correction 
factors for the cross-stream velocity components which probably did not sufficiently 
correct the normal component data there. 

The normalized third moments or skewness factors of the fluctuating velocity 
components are shown in figure 4 (a+) for the near-wall region. Our present data, as 
well as the data of Balint et a l .  (1987), agree quite well with those of Wei (1987) for 
the streamwise component skewness factor S(u) as seen in figure 4(a) .  Wei (1987) 

3 FLM 228 
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FIGURE 3. Measured r.m.s. fluctuating velocity components normalized with inner scaling u, and 
v and compared to other measured and simulated values. Symbols given in table 2. Hatched band 
shows range of Wei & Willmarth (1989) data. Upper bound, Rid = 39582; lower bound, Rid = 2970. 

does not find a strong Reynolds-number dependence for this statistic. The simulation 
of Kim et aE. (1987) and the measurements of Kastrinakis & Eckelmann (1983) of this 
component are considerably more negative for y+ > 15. The skewness factors of our 
present data for the normal component S(v )  are slightly negative in the region 15 < 
y+ < 50, as shown in figure 4(b), but not so much as in our Balint et al. (1987) 
measurements, which are less reliable because of the greater percentage of 
unconverged data near the wall, as mentioned above. This negative skewness S(v)  is 
also seen in the data of Wei (1987) and of Kim et al. (1987) within the buffer layer 
but not in the data of Kastrinakis & Eckelmann (1983), which have a high positive 
skewness, or in those of Klewicki (1989). Klewicki (1989) has tabulated this statistic 
for numerous investigations and find no consistent trend to explain the rather large 
differences. Gresko (1988), however, has shown that v-component statistics measured 
with hot wires are much more subject to  measurement errors due to thermal cross- 
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FIQURE 4. Measured skewness factors of fluctuating velocity components compared to other 
measured and simulated values. Symbols given in table 2. 

talk and length-to-diameter sensor wire ratio effects than u-component statistics. 
Recent highly resolved LDV measurements by Karlsson & Johansson (1988) appear 
to provide the best values obtained in the laboratory for this statistic. With a 
resolution of 0.5 viscous lengths in the wall-normal direction in a boundary layer at  
R, = 2420, they obtained values of about -0.2 in the region y+ x 3-20, crossing over 
to positive values at  y+ x 40 and agreeing very well with the simulation of Kim et al. 
(1987). The skewness factor for the spanwise component S (w)  should be zero because 
of the symmetry of the mean flow. Both our laboratory measurements and those of 
Kastrinakis & Eckelmann (1983), as well as the simulation of Kim et al. (1987) all 
demonstrate this symmetry reasonably well as seen in figure 4(c). 

The normalized fourth moments or flatness factors of the three fluctuating velocity 
components are shown in figure 5 (a-c), where the value of 3.0 for a Gaussian random 
variable is also indicated. All the laboratory data and numerical simulations in the 

3-2 
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FIGURE 5. Measured flatness factors of fluctuating velocity components compared to other 
measured and simulated values. Symbols given in table 2. 

wall region agree quite well for the streamwise component F ( u ) ,  as seen in figure 5 (a) .  
Our present data and those of Balint et al. (1987) agree particularly well with those 
of Wei (1987) at a similar Reynolds number. For the normal component F ( v )  there 
is greater variation near the wall as seen in figure 5 ( b ) .  Wei's low-Reynolds-number 
F(w) (not shown here) increases rapidly with decreasing y+ in the same manner as the 
data of Kim et al. (1987), possibly indicating a Reynolds-number dependence near 
the wall. However, the data of Karlsson & Johansson (1988) also show this trend, 
probably indicating some attenuation of our highest amplitudes of the normal 
velocity component fluctuations. The flatness factor of the spanwise component F(w)  
is very similar for all the measurements and the simulation compared in figure 5(c).  

It should be mentioned that the skewness and flatness factors of the fluctuating 
velocity components shown in figures 4 and 5 as well as those for the fluctuating 
vorticity components, later shown in figures 13 and 14, obtained from the database 
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of Kim et al. (1987) have been provided by J. Kim (1989, private communication). 
He calculated the vorticity component skewness and flatness values for the purposes 
of this comparison. 

3.3. Reynolds shear stress 
The Reynolds shear stress, normalized by outer variables u,' (the mean shear stress 
a t  the wall) and 6, is compared in figure 6 (a)  to the measurements of Klebanoff ( 1954) 
and the simulation values of Spalart (1988). Except for our data point a t  y/S x 0.32 
the agreement is good. The too-large value a t  that location is also seen for the r.m.s. 
streamwise component value in figure 2 ( a ) ,  and is probably due to the mean velocity 
a t  this location not sufficiently matching the mean velocity at which the pitch and 
yaw calibration was carried out. 

In the near-wall region the same data are plotted as a function of y+ in figure 6(b). 
The Wei & Willmarth (1989) channel flow measurements shows a well-defined 
increase in the maximum value of the Reynolds shear stress with increasing 
Reynolds number from a value of about 0.65 a t  R3 = 2970 to a value of about 0.88 
a t  R3 = 39582 as seen in the band hatched in the figure. This again demonstrates the 
lack of similarity of a turbulent boundary layer a t  low Reynolds number for inner 
variable scaling. It should be pointed out that their calculation of the Reynolds shear 
stress from the momentum equation for channel flow shows that their measurements 
are somewhat too low in the near-wall region (y+ < 80) at R+ = 22796; they 
attribute this to probe resolution. Our data agree reasonably well with their 
measurements at this comparable Reynolds number for y+ < 45 and are only slightly 
larger than their calculated values for y+ > 45. This may indicate that our values are 
also attenuated near the wall because of probe resolution, although this is not seen 
in the correlation coefficient discussed below. The channel flow data of Kastrinakis 
& Eckelmann (1983) also agree quite well with Wei & Willmarth (1989) for the 
smaller y+ values, but deviate from their results for y+ 2 60. The low-Reynolds- 
number channel flow data of Kim et al. (1987) are in fair agreement with the low- 
Reynolds-number results of Wei & Willmarth (1989). The values of Spalart (1988) 
appear to be somewhat too large in the buffer layer when compared to the other. 
results and to the Reynolds-number trend of the Wei & Willmarth (1989) data. 

When the Reynolds shear stress is plotted as a correlation coefficient and as a 
function of y / 6  in figure 6 ( e ) ,  our values are larger than the measured values of Wei 
& Willmarth (1989) for y / 6  < 0.1 where the boundary layer and channel flows are 
comparable. However, their computed values from the momentum equation are 
closer to ours in this region of the flow; a t  y/6 of 0.1, their measured value is about 
10% smaller than their computed value and this percentage becomes greater with 
decreasing y+. For y/6 > 0.1 our data show the same trend as the boundary-layer 
data of Klebanoff (1954), but with a smaller maximum plateau of about 0.44 
compared to about 0.5 for Klebanoff (1954). Our values are more consistent with the 
other data compared. In this region, we agree very well with the boundary-layer 
simulation of Spalart (1988). Wei (1987) found that the maximum value of the 
correlation coefficient increases with decreasing Reynolds number from about 0.34 a t  
R = 39582 to about 0.44 a t  R = 14914. However, the peak then decreases again to 
about 0.39 for his lowest Reynolds number of R = 2970. With this in mind, the 
maximum value obtained by Kim et al. (1987) at a similarly low Reynolds number 
is somewhat larger than that found by Wei (1987). The Kastrinakis & Eckelmann 
(1983) results are lower throughout the wall region than the data of Wei (1987) at a 
comparable Reynolds number. 
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yI6  or Y I ~  

FIGURE 6. (a) Measured Reynolds shear stress normalized with outer scaling u, and 8 and compared 
to  other measured and simulated values. (b) Measured Reynolds shear stress normalized with inner 
scaling u, and v and compared to other measured and simulated values. Shaded band shows range 
of Wei & Willmarth (1989) data. Upper bound, RG = 39582 ; lower bound, R+, = 2970. (c) Measured 
Reynolds shear stress correlation coefficient compared to other measured and simulated values. 
Symbols given in table 2. 

3.4. Velocity spectra 
In figures 7 (a-c) and 8, the one-dimensional energy spectrum functions 

$ ( w )  = E&)/$' 

where lom q51(w) dw = 1.0, 

for the three velocity components and the Reynolds shear stress cross-spectrum are 
shown, normalized with the boundary-layer thickness. The spectra are for y+ = 18.3 
in our boundary layer. Here w = 2xf  indicates the angular frequency. The spectra 
have been plotted as a function of the wavenumber k, = 0/2nf, which is also 
normalized with 6. These are, in fact, frequency spectra for which the streamwise 
wavenumbers have been estimated in the usual way using Taylor's hypothesis with 
the local mean velocity at  the point of measurement as the convection velocity. In 
these figures we compare our measured spectra to frequency spectra of Wei & 
Willmarth ( 1989) similarly transformed using Taylor's hypothesis to streamwise 
wavenumber spectra. Also compared are the true streamwise wavenumber spectra of 
Spalart (1988). These comparison spectra were obtained at y+ = 15.9 and y+ = 15 
respectively. In general there is good agreement between the spectra, particularly 
between ours and those of Wei & Willmarth (1989). Spalart's (1988) spectra of all 
three components show a small buildup of energy at  the highest wavenumbers. The 
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FIGURE 7. Measured one-dimensional fluctuating velocity component spectra a t  y+ = 18 compared 
to other measured (Wei & Willmarth 1989 at y+ = 15.9) and simulated (Spalart 1988 at  y+ = 15) 
results. Symbols given in table 2. 

agreement a t  our highest wavenumbers supports our contention in Part 1 that the 
nine-sensor probe resolves the velocity field quite well. Particularly satisfying is the 
agreement between Wei & Willmarth (1989) v-component spectrum and our data, 
given the difficulty in measuring this component well. 

Our cross-spectrum of the uv product time series is compared to that of Wei & 
Willmarth (1989) in figure 8. The agreement is excellent except a t  the highest 
wavenumbers where our spectrum shows some buildup of energy. However, this only 
begins to occur at an energy an order of magnitude lower than the maximum. 
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FIQURE 8. Measured one-dimensional uv-product cross-spectrum at y+ = 18 compared t o  

measured results of Wei & Willmarth (1989) at y+ = 15.9. Symbols given in table 2. 

3.5. Turbulent kinetic energy transport 
The transport equation for turbulent kinetic energy is given by 

I I1 111 IV v VI 

The terms in this equation are clearly interpreted by Corrsin (1953) as 
I : the rate of advection of turbulent energy from mean motion kinetic energy ; 
I1 : the rate of production of turbulent energy from mean motion kinetic energy ; 
I11 : the rate of advection of turbulent energy by turbulent motion ; 
I V :  the rate of transfer of turbulent energy by the work of fluctuating pressure 

gradients. 
Corrsin (1953) points out that the last two terms, which can be combined into a 

single viscous term, are often misinterpreted. They are correctly defined and 
interpreted as 

V : D = v [ V 2 ( ~ )  + (a2/axt axk) (U,)], which is the rate of transport (diffusion) 
of turbulent energy by viscous forces ; and 

VI  : E = v(aut/8xk) [(aut/axk) + (au,/ax,)], which is the rate of dissipation of 
turbulent energy to heat. 

In figure 9 the production and dissipation rate terms measured in our boundary 
layer are normalized with the outer variables 6 and ua and plotted as a function of 
y / S .  They are compared to the previous boundary-layer measurements of Klebanoff 
(1954) and to the simulation of Spalart (1988). The dissipation rate values of 
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FIQURE 9. Measured turbulent kinetic energy production and dissipation rates normalized with 
outer scaling u, and S and compared to other measured and simulated values. Symbols given in 
table 2. 

Klebanoff (1954) were found from the three time derivatives du/dt, dvldt, and dwldt, 
which were transformed to streamwise spatial derivatives with Taylor's hypothesis, 
and from direct measurements of duldy and duldz. For the y- and z-gradients of the 
v- and w-velocity fluctuation components Klebanoff (1954) assumed isotropic 
relationships. I n  the outer part of the flow, for y/S > 0.1, all of the investigations 
agree quite well, but in the region close to  the wall there are very substantial 
differences. In  particular, Klebanoffs (1954) data show extremely high values of 
both production and dissipation rates compared to  our measurements and Spalart's 
(1988) simulation, with maximum values a t  1240 and 910 respectively (off the scale 
of the figure). The simulation of Spalart (1988) also gives a somewhat larger 
maximum value of the production rate than our measurements as seen in detail for 
the near-wall region in figure 10. 

The production and dissipation rate terms are emphasized for yt < 80 in figure 10, 
where our measurements are normalized with inner variables v/u: and compared to  
the simulation values of Spalart (1988) and of Mansour et al. (1988). The latter data 
were computed from the simulation of Kim et al. (1987). With this normalization, our 
measured maximum production rate is considerably smaller than those of both the 
simulations for the three locations near the wall. This reflects the smaller values of 
Reynolds shear stress we measured, as was seen in figure 6 ( b ) .  As in that figure for 
Reynolds shear stress, our values of production rate agree very well with the 
measured values of Wei (1987) for his R3 = 22776. He states, however, that his 
measurements underestimate the momentum balance calculation near the wall and 
attributes this to  probe resolution, even though a t  this Reynolds number the 
resolution was 2.2 Kolmogorov lengthscales. In  this region it is also unclear how 
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FIGURE 10. Measured turbulent kinetic energy production and dissipation rates normalized with 
inner scaling u, and v and compared to other measured and simulated values. Symbols given in 
table 2 except for *, dissipation neglecting cross-product velocity gradient correlations and 9, 
dissipation assuming isotropy. 

Reynolds-number dependent the data are for inner scaling. Our dissipation rate 
measurements agree quite well with the computed values of Mansour et al. (1988) 
obtained from the simulation of Kim et al. (1987), but are smaller than those of 
Spalart (1988) near the wall, whose Reynolds number is closer to ours. 

Also shown in the figure is the distribution of dissipation rate obtained from our 
measured streamwise gradient &/ax if (a )  isotropy is assumed, 

2 

8 =  15v&), ( 5 )  

and if (b )  the cross-product velocity gradients correlations in the full dissipation rate 
expression are neglected. It is clear that the flow is extremely anisotropic near the 
wall, and that the cross-product velocity gradient correlations play an increasingly 
larger role as the wall is approached. 

An estimate of the normalized dissipation rate 

€+ = l.O/Ky+ (6) 
is also shown in figure 10. This expression, given by Tennekes & Lumley (1972), is 
obtained by assuming that the Reynolds stress in the logarithmic layer is 
approximately equal to pu,", that production equals dissipation rate in this region, 
and knowing that the gradient of the mean velocity is proportional to u,/Ky, where 
K is the Kdrmdn constant. It is obvious that the estimate in (6) is quite good in the 
logarithmic region, but it greatly overestimates the dissipation rate in the lower half 
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of the buffer layer and in the viscous layer where the assumptions in its formulation 
break down. This fact forced us, in Part 1, to rely on the direct measurements in 
order to estimate the Kolmogorov lengthscale in the context of the probe resolution 
discussion. 

Although all of these velocity components statistics in $3  have been previously 
measured and simulated, i t  is important to assess the capacity of the nine-sensor 
probe to resolve and measure the velocity field. Moreover, our laboratory velocity 
measurements take into account, for the first time, the variation of the velocity field 
over the probe sensing area. If the variation of these velocity statistics with the 
Reynolds number, as documented by Wei & Willmarth (1989), is taken into 
consideration, our measurements are in generally good agreement with the highly 
resolved laboratory results and with the simulations. We do seem to underestimate 
somewhat the Reynolds stress in the buffer layer and overestimate it in the 
logarithmic region for inner scaling which is, of course, also reflected in the kinetic 
energy production rate values obtained with this scaling. These Reynolds stress 
differences are not so evident, however, when the data are scaled with the outer 
variables 6 and u,. 

4. Vorticity component statistical properties 
Although many of the vorticity component statistics discussed in this section have 

been determined from direct simulations, many have never been measured in the 
laboratory. If for no other reason, i t  is important to show them here in order to verify 
experimentally the simulations while a t  the same time verifying the capacity of the 
nine-sensor probe to  measure the vorticity vector. Such verification will provide 
confidence in measurements made with this probe in more complex turbulent flows 
which are presently beyond the reach of direct simulations. The new information 
provided here are the r.m.s. distributions of each of the nine velocity gradients, 
probability density distributions and spectra of the three vorticity components, and, 
most importantly, the distribution across the boundary layer of the terms in the 
enstrophy transport equations. 

4.1. Moments of vorticity Jluctuation components 
Our r.m.s. values of all three vorticity components, normalized with outer variables 
u, and S are shown in figure l l ( a ) .  These data are compared to  our previous 
boundary-layer measurements, Balint et al. (1987), and to  the numerical simulation 
of Spalart (1988). I n  addition, the r.m.s. of the spanswise component of vorticity w, 
is also compared to the recent laboratory measurements of Klewicki (1989), 
mentioned earlier. Our spanwise component measurements agree quite well with the 
measurements of Klewicki (1989) and with the simulation of Spalart (1988). Very 
near the wall our values are higher than those of Spalart (1988) for the streamwise 
and normal components with this normalization. In fact, much better collapse of all 
the data sets for all three components is obtained by scaling with U ,  and 6 as seen 
in figure 11 ( b ) .  The latter scales the data with a measure of the average shear across 
the entire boundary layer. It is evident from the figure that the r.m.s. of w, is 
considerably larger near the boundary than are the r.m.s. values of the other two 
components ; the components become much more nearly equal with increasing 
distance from the wall. This is probably due to spanwise stretching of spanwise 
vorticity near the wall. As the vortex lines are rotated into the streamwise direction 
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FIGURE il(a).  For caption see next page. 

and are lifted away from the wall, the r.m.s. values of all three components become 
nearly equal. 

Details of the near-wall region, y+ < 80, are shown in figure 12 where the 
normalization is with inner variables u, and v. The channel flow measurements of 
Kastrinakis &, Eckelmann (1983) and the simulation of Kim et al. (1987) are added 
to the comparison data for this region of the flow. With this scaling, all three 
components of vorticity measured in our experiment show somewhat lower values 
over the wall region than all of the comparison data, particularly for the normal 
component my. Our new data compares well with our previous data, Balint et al. 
(1987), except for the locations closest to the wall where we now measure somewhat 
lower values at our higher Reynolds number. Recall that Balint et al. (1987) also had 
a greater problem with obtaining converged solutions in this region as discussed in 
$3.1. Near the wall there are rather larger differences of almost 30% between the two 
simulations for the r.m.s. of the streamwise component w,. It remains to  be 
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FIGURE 11 .  (a) Measured r.m.s. fluctuating vorticity components normalized with outer scaling u, 
and 6 and compared to other measured and simulated values. ( b )  Measured r.m.s. fluctuating 
vorticity components normalized with variables U ,  and 6 and compared t o  other measured and 
simulated values. Symbols given in table 2. 

determined whether these differences are primarily due to Reynolds-number 
dependence, which Spalart's ( 1988) data at different Reynolds number indicate is in 
part the case, or whether they are mostly due to measurement and numerical 
resolution and other errors. 

The normalized third and fourth moments, or skewness and flatness factors of the 
vorticity components, are shown in figures 13 and 14 for the near-wall region. They 
are compared t o  the simulation of Kim et al. (1987) from which these statistics were 
computed by J. Kim (1989, private communication). For the streamwise component 
our data are also compared to the measurements of Kastrinakis & Eckelmann (1983), 
and for the spanwise component, to  the measurements of Klewicki (1987). The 
skewness of the streamwise and normal components S(w,) and S(w,)  should be zero 
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because of the symmetry of the flow about these axes. The values computed by Kim 
exhibit these properties quite well ; the small deviations are attributed by him to the 
smaller sample size used to  calculate this statistic than was used for the r.m.s. 
calculations. Our data show good symmetry except for the three points closest to the 
wall for the streamwise component 0,. The skewness data of Kastrinakis & 
Eckelmann (1983) for this component also show considerably asymmetry as the wall 
is approached, whereas the data of B a h t  et al. (1987) show relatively good 
symmetry. When the probability density distribution of w, is discussed below, it will 
be seen that this negative skewness in the present data very near the wall is due to 
small biases in the low-amplitude fluctuations and not because of strong asymmetry 
of most of the distribution. 

The spanwise component of vorticity w, is not symmetric; i t  is quite negatively 
skewed in the wall region. All of the data sets compared agree rather well for this 
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statistic. A negative skewness implies that there is higher probability of large 
negative than of large positive fluctuations, and these negative fluctuations have the 
same sense of rotation as the mean shear. This indicates that intense vorticity 
stretching in the spanwise direction is apparently more frequent than compression of 
the same magnitude, resulting in these skewed distributions. 

In figure 14 the flatness factor of 3.0 for a Gaussian random variable is indicated 
for reference. The flatness factors of all three vorticity components are considerably 
larger than the Gaussian value except for the normal and spanwise components F(o,)  
and F(w,) quite close to the wall. This is an indication of the intermittent character 
of vorticity fluctuations above the buffer layer. Our streamwise component data 
have substantially smaller values close to the wall than those provided by Kim but are 
larger than the channel flow data of Kastrinakis & Eckelmann (1983) which are 
taken at  a higher Reynolds number than the simulation but lower than our 
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FIGURE 14. Measured flatness factors of fluctuating vorticity components compared to other 

measured and simulated values. Symbols given in table 2. 

experiment. All the data sets agree rather well for the flatness factors of the normal 
component. Our data are somewhat smaller than both the Kim simulation data and 
the measurements of Klewicki (1989) for the spanwise component. The slight lack of 
smoothness of the Kim data is again attributed by him to the smaller data sample 
used to compute this statistic. Our lower values of the flatness factor for all three 
vorticity components may be due to probe resolution. This would tend to attenuate 
the highest-amplitude fluctuations which are heavily weighted in the flatness factor. 

The r.m.s. values of the individual velocity gradients, normalized with outer 
variables, are shown in figure 15. As expected, the cross-stream gradients a/ay and 
a/& for all these velocity components are significantly larger near the wall than are 
the streamwise gradients a/& which use Taylor's hypothesis. The near-wall-region 
data, normalized with inner variables, are shown in figure 16. In and above the buffer 
layer our r.m.s. values of the streamwise gradients compare fairly well with those of 
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FIGURE 15. Measured r.m.s. fluctuating velocity gradient components normalized with outer 
scaling u, and 8. Symbols given in table 2. 

Kim as has been shown by Piomelli et al. (1989). This fact supports the use of Taylor's 
hypothesis as noted in Part  1 and indicates the relatively smaller importance of these 
streamwise gradients compared to  the cross-streamwise gradients in the statistics of 
the wy and w, components. 

4.2. Probability density distributions 
The probability density functions (PDFs) of the three vorticity components are 
shown in figure 17(a-c) for all the measurement locations. Superimposed on these 
PDFs at y+ = 41, in figure 18, are the PDFs taken in the free stream where the flow 
is nominally irrotational. The PDFs for the free stream have been previously 
discussed in Part 1. From figure 18 it is evident that the maximum values of the 
vorticity components are very much larger than the largest values of spurious 
vorticity components arising from facility and instrumentation system errors. The 
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previously determined negative skewness of the spanwise component of vorticity 
near the wall is quite evident from figure 17(c), as is the narrowing of the range of 
vorticity component values with distance from the wall, a fact reflected in the 
decrease in the r.m.s. values. The erroneous negative skewness of the streamwise 
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4.3. Vorticity spectra 
One-dimensional spectra of the three vorticity components a t  y+ = 18, normalized 
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inner scaling u, and v at positions across the boundary layer. Symbols given in table 2. 
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FIGURE 18. Comparison of the measured probability density functions of the fluctuating 
vorticity components at y' = 41 and in the free stream where the flow is nominally irrotational. 

with the boundary-layer thickness are shown in figure 19(u-c). The angular 
frequencies of our data have again been transformed into streamwise wavenumbers 
utilizing Taylor's hypothesis. Our measured frequency spectra are compared to  the 
true wavenumber spectra of P. R. Spalart (1990, private communication) at y+ = 15 
computed from his R, = 14500 boundary-layer database. Except a t  Spalart's highest 
wavenumbers, the agreement is very good; all of Spalart's spectra show some 
buildup of energy at his highest wavenumbers. The energy buildup at high 
wavenumbers in Spalart spectra is worse for #" and $wz which involve his poorest- 
resolved gradients, i.e. those in the streamwise drection. Our data are also somewhat 
attenuated a t  higher wavenumbers because of not adequately resolving the very 
smallest velocity gradient scales near the wall. The enstrophy (one half of the mean- 
square vorticity component sum) spectrum is weighted by wavenumber and 
compared to  the kinetic energy spectrum in figure 20. It is evident that  the maximum 
energy occurs a t  a higher wavenumber for the enstrophy spectrum compared to  the 
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FIGURE 19. Measured one-dimensional fluctuating vorticity component spectra at y+ = 18 
compared to direct numerical simulations of P. R. Spalart (1990, private communication) a t  
y+ = 15. 

kinetic energy spectrum as expected, but the wavenumber separation at  this 
Reynolds number is not very great. 

4.4. Enstrophy transport 
Balint, Vukuslav6evid & Wallace (1990) were the first to determine the terms in the 
total, mean, and fluctuating enstrophy transport equations for a boundary layer. 
The equation for the transport of total enstrophy is given by 
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where the four terms are 
I: the rate of advection of total enstrophy; 
11: the rate of rotation and stretching/compression of total enstrophy by the 

I11 : the rate of viscous diffusion of total enstrophy ; and 
IV:  the rate of viscous dissipation of total enstrophy. 
As Balint et al. (1990) point out, the terms in (7) can be obtained from 

combinations of the terms in the transport equations for mean and fluctuating 
enstrophy. These equations are respectively 

velocity gradient field ; 

I I1 111 IV V VI 

and 

IV V VI VII / VIII 
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FIGURE 21. Measured terms in equation (7) for the transport of total enstrophy normalized with 
inner scaling U, and v. Closed symbols, present measurements ; open symbols, B a h t  et al. (1990) ; 
(V, V), advection (term ( 7 ) I ) ;  (0,  O), rotation and stretching/compression (term (7)II ) ;  (A, A), 
viscous diffusion (term (7) 111) ; (. , n), viscous dissipation (term (7) IV). 

The terms in (8) and (9) have been interpreted by Tennekes & Lumley (1972) so this 
will not be repeated here. The advection rate of total enstrophy (term (7) I) is made 
up of terms (8) I and (8) I1 in the mean enstrophy equation and terms (9) I, (9) I1 and 
(9) I11 in the fluctuating enstrophy equation. The rotation and stretching/ 
compression rate of total enstrophy (term (7) 11) is made up of terms (8) I11 and (8) 
IV and (9) IV,  (9) V and (9) VI. Terms (8) V and (9) VII combine to form the viscous 
diffusion rate of total enstrophy (term (7) 111). Finally, terms (8)VI and (9)VIII 
make up the viscous dissipation rate of total enstrophy (term (7) IV). Results for the 
total enstrophy are shown in figure 21. It appears that the rate of viscous dissipation 
of total enstrophy is balanced primarily by the viscous diffusion rate close to the 
wall; however, for y+ > 40 only the rotation and stretching/compression and viscous 
dissipation rate terms play a significant role. The viscous dissipation rate of total 
enstrophy cannot be measured with the nine-sensor probe and so must be determined 
by difference. Thus, these values contain the residual error in the measurement of the 
other three terms. The mean vorticity and mean vorticity gradients used in 
determining terms (7) I, (7) I1 and (7) I11 were obtained from differentiating a fit of 
the mean velocity profile. Gradients of vorticity fluctuation correlations were found 
from graphical slopes. In spite of the rather large inherent errors in these methods, 
the trends of these terms are repeatable, as seen by the comparison of our present 
results with those of Balint et al. (1990). A comparison with unpublished values 
computed from the Kim et al. (1987) simulation by P. Moin (1990, private 
communication) confirmed these relative trends, although he obtained larger 
magnitudes of the terms. 
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5. Conclusions 
The nine-sensor probe used in this boundary-layer experiment measures all the 

basic statistics of the velocity field with good accuracy. Near the wall there is some 
attenuation of the measured values because of spatial resolution. Where statistical 
properties of the vorticity field were available from either other measurements or 
from direct numerical simulations, our measured values also compared fairly well 
with them. This demonstrates that the finite-difference approximation we use to 
estimate the velocity gradients is adequate for the Reynolds number investigated 
here. The accuracy requirement for the velocity estimate at each of the three arrays 
is very high, however, in order to get a sufficiently accurate estimate of the velocity 
gradients. 

The following new results have been obtained : 
(i) Probability density distributions of the fluctuating vorticity components are 

quite negatively skewed for the spanwise component in the near-wall region, 
indicating that intense spanwise vorticity stretching predominates over vorticity 
compression there. 

(ii) Spectra of the fluctuating vorticity components are provided here for the first 
time for bounded flows. They show the expected shift of maximum energy to higher 
wavenumbers compared to the velocity spectra, although that shift is not very 
pronounced at this Reynolds number. 

(iii) The balance of terms in the transport equation for total enstrophy shows that 
viscous dissipation rate is primarily balanced near the wall by the viscous diffusion 
rate; further from the wall it is balanced by the rotation and stretching rate. 

Having established that this probe can be used to measure simultaneously the 
velocity and vorticity vectors, we plan to investigate the conditional properties of 
this data set in order to help clarify the structural characteristics of the boundary 
layer. 

We are grateful to S.-R. Park for helping us plot many of the figures. John Kim, 
Joe Klewicki, Steve Robinson, Philippe Spalart and Tim Wei helpfully provided us 
with much of the comparison data. 
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